Data Scaling, Functional Forms, APE, and Goodness-of-Fit in Logit and Probit

CLABE 2025/2026

Marco Rosso

1 December 2025

Block 1: Learning Outcomes

By the end of this block, you will understand:

- √ How scaling (rescaling) variables affects OLS coefficients, SEs, and test statistics
- √ Why some OLS statistics are invariant to scaling while others are not
- ✓ The motivation for nonlinear functional forms (level-level, log-level, log-log, level-log)
- ✓ How to interpret coefficients correctly: elasticities, semi-elasticities, and percent changes
- ✓ The special case: dummy variables in linear and log models
- √ Practical Stata: comparing specifications and interpreting output

Effects of Data Scaling on OLS Statistics

The Setup: Consider the model $y = \beta_0 + \beta_1 x + u$ estimated by OLS.

Now scale the regressor: Define $x^* = c \cdot x$ where c is a constant (e.g., c = 1000 converts euros to thousands of euros).

The new regression becomes:

$$y = \beta_0^* + \beta_1^* x^* + u$$

where $x^* = c \cdot x$, so $x = \frac{x^*}{c}$.

Substituting:

$$y = \beta_0^* + \beta_1^*(c \cdot x) + u = \beta_0^* + (c \cdot \beta_1^*)x + u$$

Comparing coefficients:

$$\beta_1^* = \frac{\beta_1}{c} \tag{1}$$

Key insight: If you multiply a regressor by c, its coefficient is divided by c.

Scaling Invariance in OLS: What's Invariant?

Statistic	Invariant?	Explanation
Slope coefficient	NO	$\beta_1^* = \beta_1/c$
Standard error (SE)	NO	$SE(eta_1^*) = SE(eta_1)/c$
t-statistic	√YES	$t=rac{eta_1^*}{\mathit{SE}(eta_1^*)}=rac{eta_1/c}{\mathit{SE}(eta_1)/c}=rac{eta_1}{\mathit{SE}(eta_1)}$
p-value	√YES	Depends only on t-stat
Fitted values \hat{y}	√YES	$\hat{y} = eta_0^* + eta_1^* x^*$ unchanged
Residuals	√YES	$\hat{u} = y - \hat{y}$ unchanged
R^2	√YES	$R^2 = 1 - rac{\sum \hat{u}^2}{\sum (y - ar{y})^2}$ unchanged
F-statistic (overall)	√YES	Model fit unchanged

Practical implication: Reporting results in different units (euros vs. thousands) changes the magnitude of coefficients and SEs, but does NOT affect inference (t-stats, p-values, confidence intervals).

Understanding Scaling: An Example

Example: Wage model: wage = $\beta_0 + \beta_1 \cdot \text{education} + u$

Suppose we estimate: $\widehat{\text{wage}} = 2000 + 500 \cdot \text{education}$ (R² = 0.40)

Interpretation: Each additional year of education increases wage by \$500.

Now rescale education in months: Let $educ^* = 12 \cdot education$

The new regression becomes:

$$\widehat{\mathsf{wage}} = 2000 + \beta_1^* \cdot \mathsf{educ}^* + u$$

We expect: $\beta_1^* = \frac{500}{12} = 41.67$

Interpretation: Each additional month of education increases wage by \$41.67.

But R² is still 0.40, t-stat unchanged, p-value unchanged.

Lesson: Report scaling clearly! Use comparable units for audience interpretation.

Functional Forms in Regression

Why use nonlinear (transformed) functional forms?

- Theoretical motivation: Many economic relationships are not linear
 - Returns to education (diminishing returns)
 - ▶ Demand elasticity (constant vs. variable)
- Statistical motivation: Better fit, more stable residuals, easier interpretation
- Interpretability: Elasticity (percentage change) often more natural than absolute change

Four main functional forms:

Name	Model	Interpretation of β
Level-Level	$y = \beta_0 + \beta_1 x$	$\Delta y = eta_1 \Delta x$ (absolute)
Log-Log	$\ln y = \beta_0 + \beta_1 \ln x$	$eta_1=$ elasticity (percent per percent)
Log-Level	$\ln y = \beta_0 + \beta_1 x$	$100eta_1=$ percent change in y per unit of x
Level-Log	$y = \beta_0 + \beta_1 \ln x$	$\beta_1 = \text{absolute change in } y \text{ per } \% \text{ of } x$

Log-Log Model: Elasticity Interpretation (1)

Model:
$$\ln y = \beta_0 + \beta_1 \ln x + u$$

Derivation: Taking derivatives with respect to $\ln x$:

$$\frac{\partial \ln y}{\partial \ln x} = \beta_1$$

Since $\frac{\partial \ln y}{\partial \ln x} = \frac{dy/y}{dx/x}$, this is the **elasticity**:

Elasticity =
$$\frac{\% \text{ change in } y}{\% \text{ change in } x} = \beta_1$$
 (2)

Log-Log Model: Elasticity Interpretation (2)

Example: Demand model In $Q = \beta_0 + \beta_1 \ln P + u$

If $\beta_1 = -0.5$: A 1% increase in price leads to a 0.5% decrease in quantity demanded.

Advantages:

- Constant elasticity across values of x
- Natural scale for many economic variables
- Easy to compare across different units

Log-Level Model: Semi-elasticity Interpretation (1)

Model: $\ln y = \beta_0 + \beta_1 x + u r$

Derivation: Taking derivatives:

$$\frac{\partial \ln y}{\partial x} = \beta_1$$

Since $\frac{\partial \ln y}{\partial x} = \frac{1}{y} \frac{\partial y}{\partial x}$:

$$\frac{\text{\% change in }y}{\text{unit change in }x} \approx \beta_1 \quad \text{(semi-elasticity)}$$

Interpretation rule: Multiply β_1 by 100 to get percentage change.

(3)

Log-Level Model: Semi-elasticity Interpretation (2)

Example: Wage model $ln(wage) = \beta_0 + \beta_1 \cdot education + u$

If $\beta_1 = 0.08$: Each additional year of education increases wage by approximately $100 \times 0.08 = 8\%$.

More precisely (exact formula):

% change =
$$100(\exp(\beta_1) - 1) \approx 100\beta_1$$
 (for small β_1)

If $\beta_1=0.08$: exact percentage change $=100(\exp(0.08)-1)=8.33\%$

Dummy Variables in Linear Models

Model:
$$y = \beta_0 + \beta_1 D + \beta_2 x + u$$
, where $D \in \{0, 1\}$

Interpretation:

- When D = 0: $E[y|D = 0] = \beta_0 + \beta_2 x$
- When D = 1: $E[y|D = 1] = (\beta_0 + \beta_1) + \beta_2 x$
- Effect: β_1 is the level shift when D changes from 0 to 1

Example: Gender wage gap

$$ln(wage) = \beta_0 + \beta_1 \cdot female + \beta_2 \cdot education + u$$

If $\beta_1 = -0.10$: Women earn approximately 10% less than men, holding education constant.

Key insight: In a **level model**, β_1 is an absolute difference. In a **log model**, β_1 is a percentage difference.

Dummy Variables When Dependent Variable is Log (1)

Important case:
$$\ln y = \beta_0 + \beta_1 D + u$$
, where $D \in \{0,1\}$

What does β_1 represent?

When
$$D=0$$
: $\ln y = \beta_0 + u \Rightarrow E[\ln y] = \beta_0$
When $D=1$: $\ln y = \beta_0 + \beta_1 + u \Rightarrow E[\ln y] = \beta_0 + \beta_1$

Taking exponentials:

$$\frac{E[y|D=1]}{E[y|D=0]} = \frac{e^{\beta_0 + \beta_1}}{e^{\beta_0}} = e^{\beta_1}$$

Percentage change formula:

% change in
$$y=100 imes (e^{eta_1}-1)$$
 (4)

Dummy Variables When Dependent Variable is Log (1)

Example: Sales with promotion dummy.

$$ln(sales) = 4.5 + 0.25 \cdot promotion + u$$

If promotion: % change = $100 \times (e^{0.25} - 1) = 100 \times 0.2840 = 28.4\%$ increase

Approximation (for small β_1): $100 \times 0.25 = 25\%$ (close enough)

Practical Example: Comparing Functional Forms in Stata

Setup: Wage data with education and experience

Model 1 (Level-Level):

```
regress wage education experience
// Output: wage = 2000 + 500*education + 100*experience
// Interpretation: 1 yr more education --> $500 more wage
```

Model 2 (Log-Level):

```
regress ln_wage education experience // Output: ln_wage = 2.5 + 0.08*education + 0.03*experience // Interpretation: 1 yr more education --> 8\% more wage
```

Model 3 (Log-Log):

```
regress ln_wage\ ln_education\ ln_experience // Output: ln_wage\ =\ 1.0\ +\ 0.5*ln_education\ +\ 0.3*ln_experience // Interpretation: 1% more education --> 0.5% more wage (elasticity)
```

Scaling check: Rescale education in months and compare

```
generate education_months = education * 12
regress wage education_months experience
// Output: education_months coefficient = 500/12 = 41.67
// Same R^2 and t-stat!
```

Block 2: Scaling in Logit/Probit and Average Partial Effects

Core question: How does scaling affect logit/probit models?

- Coefficients in logit/probit DON'T have a natural interpretation
- Scaling a regressor scales the coefficient inversely (just like OLS)
- BUT: Marginal effects change differently
- APE (Average Partial Effect) is the modern standard

In this block:

- 1. Scaling in logit/probit: what changes?
- 2. Dummy variables when y is log: exact vs. approximate
- 3. Definition of Average Partial Effects (APE/AME)
- 4. Connection to your previous marginal effects session
- 5. Stata implementation: 'margins' command

Scaling in Logit/Probit Models (1)

Logit model:
$$P(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} = \Lambda(X\beta)$$

Rescale regressor: $x^* = c \cdot x$. Then:

$$P(Y=1|X) = \Lambda(\beta_0 + \frac{\beta_1}{c}x^*)$$

So: $\beta_1^* = \frac{\beta_1}{c}$ (same scaling as OLS!)

But what about fitted probabilities?

$$P(Y=1|x^*) = \Lambda(\beta_0^* + \beta_1^*x^*) = \Lambda\left(\beta_0 + \frac{\beta_1}{c}(c \cdot x)\right) = \Lambda(\beta_0 + \beta_1 x)$$

Scaling in Logit/Probit Models (2)

Predicted probabilities are UNCHANGED. This is also true for marginal effects:

$$\frac{\partial P}{\partial x} = \lambda(X\beta) \cdot \beta = \text{unchanged}$$

Key insight: Just like OLS:

- Coefficient changes by factor 1/c
- Standard error changes by factor 1/c
- z-statistic and p-value UNCHANGED
- Predicted probabilities UNCHANGED
- Marginal effects UNCHANGED

Exact Formula: Dummy Regressor in Log Model (1)

Recall from Block 1: When dependent variable is log and regressor is dummy:

Model: In $y = \beta_0 + \beta_1 D + u$ where $D \in \{0, 1\}$

Exact percentage change:

% change =
$$100 \times (e^{\beta_1} - 1)$$
 (5)

Examples:

- $\beta_1 = 0.10$: $\% = 100(e^{0.10} 1) = 10.52\%$
- $\beta_1 = 0.50$: $\% = 100(e^{0.50} 1) = 64.87\%$
- $\beta_1 = -0.10$: $\% = 100(e^{-0.10} 1) = -9.52\%$

Exact Formula: Dummy Regressor in Log Model (2)

Approximation (linear, valid for small β_1):

% change $\approx 100\beta_1$

(Good for $|\beta_1|$ < 0.10; use exact formula otherwise)

Why this matters for Stata: The 'margins' command can compute these for you with different levels of regressors.

Average Partial Effects (APE): Concept (1)

Central problem in nonlinear models:

- In OLS: marginal effect = β (constant for everyone)
- In logit/probit: marginal effect = $f(X\beta) \cdot \beta$ (varies by person)
- How do we report ONE number?

Solution: Average Partial Effect (APE)

Definition: For a regressor x_k , the APE is:

$$\left| \mathsf{APE}_{\mathsf{x}_k} = \frac{1}{n} \sum_{i=1}^n \frac{\partial E[y_i | X_i]}{\partial \mathsf{x}_{k,i}} \right|$$

(6)

Average Partial Effects (APE): Concept (2)

In words:

- 1. Compute the partial effect for each person in your sample
- 2. Average those effects
- 3. Report the average

For logit/probit (continuous variable):

$$\mathsf{APE}_{\mathsf{x}_k} = \frac{1}{n} \sum_{i=1}^n f(\mathsf{X}_i \beta) \cdot \beta_k$$

For dummy variable:

$$\mathsf{APE}_D = \frac{1}{n} \sum_{i=1}^n [P(y_i = 1 | D = 1, X_{-D,i}) - P(y_i = 1 | D = 0, X_{-D,i})]$$

APE vs. Coefficient in Logit

Key insight from your previous session:

APE is NOT the same as the coefficient!

Example: Logit model of low birth weight

Variable	Coefficient	APE (at mean)
Age	-0.024	-0.008 (pp)
Weight (lwt)	-0.007	-0.002 (pp)
Smoker (dummy)	0.417	0.144 (pp)

Interpretation:

- Coefficient -0.024 on age: NOT interpretable on its own
- APE -0.008 on age: One more year of age decreases probability of low birth weight by 0.8 percentage points (on average)
- APE 0.144 on smoking: Being a smoker increases probability by 14.4 percentage points (on average)

Lesson: Always report APE, not coefficients, for interpretation in nonlinear models!

Computing APE in Stata (1)

```
Command: 'margins, dydx(*)' [0.15cm]
* Estimate probit model
probit low age lwt i.smoke
* Compute Average Partial Effects
margins, dydx(*)
* Output shows:
* age: dy/dx = -0.008 (APE for age)
* lwt: dy/dx = -0.002 (APE for lwt)
* smoke: dy/dx = 0.144 (APE for smoking dummy)
```

Computing APE in Stata (2)

Variants:

- ullet 'margins, dydx(*) atmeans' o Marginal effect at the mean (old way, not recommended)
- ullet 'margins, at(age=(20(5)40))' ightarrow Predicted probabilities at different ages
- ullet 'marginsplot' o Plot the results

Key difference from your previous session:

- This session: APE defined for ANY model (linear, logit, probit, nonlinear)
- Previous session: Focused on logit/probit marginal effects specifically
- They're the same thing in a nonlinear model context!

Block 3: Goodness-of-Fit and Predictive Ability

Central question: How well does the logit/probit model predict outcomes?

In Block 3 we cover:

- 1. Review: OLS \mathbb{R}^2 and why it's not applicable to logit/probit
- 2. Classification table: Confusion matrix approach
- 3. Fraction correctly predicted (accuracy)
- 4. Sensitivity and specificity
- 5. Pseudo- R^2 : Definition and interpretation
- 6. Connecting to Wooldridge and Lecture Notes

OLS R^2 is Not Applicable to Logit/Probit (1)

OLS R^2 formula:

$$R^2 = 1 - \frac{\sum \hat{u}_i^2}{\sum (y_i - \bar{y})^2} = \frac{\text{Explained SS}}{\text{Total SS}}$$

Why this breaks for logit/probit:

- In logit/probit, \hat{y}_i is a PROBABILITY (between 0 and 1), not a binary outcome
- Actual y_i is binary (0 or 1)
- Residuals $\hat{u}_i = y_i \hat{y}_i$ are not normally distributed
- OLS R² becomes hard to interpret

OLS R^2 is Not Applicable to Logit/Probit (2)

Example confusion:

- If $\hat{y}_i = 0.7$ and $y_i = 1$: residual = 0.3
- If $\hat{y}_i = 0.7$ and $y_i = 0$: residual = -0.7
- These are not symmetric or normally distributed!

Solution: Use alternative goodness-of-fit measures based on:

- 1. Likelihood function (pseudo- R^2)
- 2. Classification accuracy (fraction correctly predicted)
- 3. Model comparison (LR tests)

Classification Table (Confusion Matrix)

Method: Convert predicted probabilities to binary predictions using a threshold (usually 0.5)

- If $\hat{P}(y_i = 1|X_i) > 0.5$: predict $\hat{y}_i = 1$
- If $\hat{P}(y_i = 1|X_i) \le 0.5$: predict $\hat{y}_i = 0$

Confusion Matrix:

	Pred		
Actual	$\hat{y}=1$	$\hat{y} = 0$	Total
y = 1	n ₁₁	n ₁₀	$n_{1.}$
y=0	n_{01}	n_{00}	$n_{0.}$
Total	n _{.1}	<i>n</i> _{.0}	n

Key metrics:

- Accuracy (fraction correctly predicted): $\frac{n_{11}+n_{00}}{n}$
- Sensitivity (true positive rate): $\frac{n_{11}}{n_1}$ (correctly predicting y=1)
- Specificity (true negative rate): $\frac{n_{00}}{n_0}$ (correctly predicting y=0)

Pseudo- R^2 for Logit/Probit (1)

Standard pseudo- R^2 (McFadden's):

Pseudo-
$$R^2=1-rac{\ell_1}{\ell_0}$$

where:

- ullet $\ell_1 = \text{log-likelihood of the estimated model (with all regressors)}$
- ullet $\ell_0 = log-likelihood of the constant-only model$

Intuition:

- Ranges from 0 to 1 (not directly comparable to OLS R²)
- Closer to 1 = better fit
- ullet $\ell_0=$ baseline (what if we only predict the marginal probability of y=1?)
- ullet $\ell_1 =$ what we get by adding regressors
- Pseudo- R^2 = relative improvement over baseline

Pseudo- R^2 for Logit/Probit (2)

Alternative interpretation: Related to likelihood ratio test

$$\mathsf{LR} = -2(\ell_0 - \ell_1) = -2\ell_0(1 - (1 - \mathsf{Pseudo-}R^2))$$

Benchmark: Pseudo- R^2 around 0.2 to 0.4 is considered GOOD for logit/probit models (much lower than OLS R^2 for similar data)

References: Wooldridge and Lecture Notes

In Wooldridge (Introductory Econometrics):

- Chapter 17: "Limited Dependent Variable Models: Logit and Probit"
 - Section 17.1: Binary response models (logit/probit)
 - ► Section 17.2c: Goodness-of-fit measures
 - ightharpoonup Discusses pseudo- R^2 , fraction correctly classified, and comparison with LPM
- Chapter 6: "Multiple Regression Analysis: Further Issues"
 - Log functional forms and interpretations
 - Dummy variables in logs
 - Elasticities and semi-elasticities

In Lecture Notes:

- Goodness of fit in logit/probit: classification table approach
- Predictive ability: comparing LPM, logit, probit
- Pseudo- R^2 definition and examples

Practical Example: Predictive Ability in Stata

Logit model of brand choice (from your notes):

```
logit choice price promotion brand_dummy

* Pseudo-R : reported automatically after logit
* Look for "Pseudo R2 = X.XXXX" in output

* Prediction of probabilities
predict p_hat, pr
* p_hat is Pr(choice=1|X)

* Convert to binary prediction (threshold=0.5)
generate y_pred = (p_hat > 0.5)

* Classification table (manually)
tabulate choice y_pred, matcell(confusion)
* Shows n11, n10, n01, n00

* Fraction correctly predicted
* = (n11 + n00) / n
```

Automatic classification table:

```
estat classification
* Shows confusion matrix and all metrics automatically
```

Summary: What You Should Know

Topic	Key Formula/Concept	Stata Command	
Scaling in OLS	$\beta^* = \beta/c$	(just rescale variables)	
Log-level model	%=100eta (approx)	ʻregress In_y xʻ	
Log-log model	$\beta = elasticity$	'regress ln_y ln_x'	
Dummy in $\log y$	$\%=100(e^{eta}-1)$	ʻregress ln_y d_varʻ	
APE in nonlinear	$APE = \frac{1}{n} \sum f'(X_i \beta) \beta$	'margins, dydx(*)'	
Accuracy	$\frac{n_{11} + n_{00}}{n}$	'estat classification'	
Pseudo-R ²	$1-\ell_1/\ell_0$	(automatic after logit)	

Remember:

- √ Scaling affects coefficients but not inference or fit
- √ Log models give elasticities and semi-elasticities
- ✓ APE is the standard for interpreting nonlinear models
- \checkmark Pseudo- R^2 and classification accuracy measure fit

Questions?

Practical assignment:

- ► Re-estimate your low birth weight model (or any logit/probit)
- ▶ Try scaling a regressor (e.g., age in decades instead of years)
- Verify that z-stats and p-values don't change
- ightharpoonup Compare pseudo- R^2 with fraction correctly classified