Goodness-of-Fit & ML Hypothesis Testing Logit and Probit Models

CLABE 2025/2026

Marco Rosso

4 December 2025

Learning Goals

By the end of this lecture, you should be able to:

- **Derive** the maximum likelihood estimator (**MLE**) in a simple binomial model and interpret it as a sample proportion.
- Explain why the usual OLS R^2 is not appropriate for logit/probit models.
- **Define and interpret McFadden's pseudo**- R^2 and relate it to the log-likelihood.
- Evaluate model performance using classification tables, accuracy, sensitivity, and specificity.
- Formulate and interpret LR, Wald, and LM tests in ML frameworks.
- ullet Implement these concepts in Stata (logit/probit, pseudo- R^2 , classification, LR/Wald tests).

Example: Probability of Passing the Exam

Data Summary (by exam round):

Exam Round	Students	Passed	$\hat{\pi}$
June (1st)	95	71	≈ 0.747
July	38	21	pprox 0.553
September	27	10	≈ 0.370
February	15	12	≈ 0.800

Natural Questions:

- Does exam difficulty differ across rounds?
- Are better-prepared students taking the June exam?
- How confident are we in each estimate $\hat{\pi}$?

Modeling: Bernoulli Distribution

Setup:

- For each student $i: Y_i \in \{0,1\}$ (fail or pass)
- ullet All students in an exam round have same passing probability: $P(Y_i=1)=\pi$
- Students are independent: (Y_1, \ldots, Y_n) are i.i.d. Bernoulli (π)

Probability mass function for each observation:

$$P(Y_i = y_i | \pi) = \pi^{y_i} (1 - \pi)^{1 - y_i}$$

where $y_i = 1$ if student passes, $y_i = 0$ if student fails.

Likelihood Function

Joint probability of observing the entire sample:

$$L(\pi; y_1, \ldots, y_n) = \prod_{i=1}^n \pi^{y_i} (1-\pi)^{1-y_i}$$

Log-Likelihood (easier to work with):

$$\ell(\pi; y) = \log L(\pi; y) = \sum_{i=1}^{n} [y_i \log \pi + (1 - y_i) \log(1 - \pi)]$$

Why log-likelihood?

- Avoids numerical underflow (products of small probabilities)
- Sums are easier to optimize than products
- Derivatives (scores) are simpler

Maximum Likelihood Estimator (MLE)

Goal: Find $\hat{\pi}$ that maximizes $\ell(\pi; y)$.

First-order condition (Score = 0):

$$\frac{\partial \ell(\pi; y)}{\partial \pi} = \frac{\sum_{i=1}^{n} y_i}{\pi} - \frac{\sum_{i=1}^{n} (1 - y_i)}{1 - \pi} = 0$$

Let $n_1 = \sum_{i=1}^n y_i$ (number of students who passed). Then:

$$\frac{n_1}{\pi} = \frac{n - n_1}{1 - \pi}$$

Solving:

$$\hat{\pi}_{\mathsf{ML}} = \frac{n_1}{n} = \bar{y}$$

Conclusion: The MLE of π is just the sample proportion!

Deriving the MLE: Analytical Solution (1)

Why showing the derivation?

- In this simple model, we can solve for $\hat{\pi}$ analytically (by hand).
- This illustrates the general principle: finding parameters where the gradient is zero.

Step-by-Step Solution:

0. Given the log-likelihood:

$$\ell(\pi; y) = \sum_{i=1}^{n} [y_i \log \pi + (1 - y_i) \log(1 - \pi)]$$

1. Step 1: Take the first derivative (Score function):

$$s(\pi) = \frac{\partial \ell(\pi; y)}{\partial \pi} = \sum_{i=1}^{n} \left[\frac{y_i}{\pi} - \frac{1 - y_i}{1 - \pi} \right]$$

Deriving the MLE: Analytical Solution (2)

2. Step 2: Rearrange using $n_1 = \sum y_i$ and $n_0 = n - n_1$:

$$s(\pi) = \frac{n_1}{\pi} - \frac{n_0}{1-\pi}$$

3. Step 3: Set $s(\pi) = 0$ and solve for $\hat{\pi}$:

$$rac{n_1}{\pi}-rac{n_0}{1-\pi}=0 \quad \Rightarrow \quad rac{n_1}{\pi}=rac{n_0}{1-\pi} \quad \Rightarrow \quad n_1(1-\pi)=n_0\pi \quad \Rightarrow$$

$$\Rightarrow \quad n_1 - n_1 \pi = n_0 \pi \quad \Rightarrow \quad n_1 = (n_0 + n_1) \pi \quad \Rightarrow \quad \pi = \frac{n_1}{n_0 + n_1} \quad \Rightarrow \quad \left| \hat{\pi} = \frac{n_1}{n} \right|$$

Crucial Difference with Logit/Probit: In Logit/Probit, the Score equations are non-linear and **cannot be solved by hand**. Software must use iterative approximation (Newton-Raphson) to find the maximum.

When is this Maximum? (Second-Order Condition)

Second derivative (Hessian):

$$H(\pi) = \frac{\partial^2 \ell(\pi; y)}{\partial \pi^2} = -\frac{n_1}{\pi^2} - \frac{n_0}{(1-\pi)^2} < 0$$
 always

Since $H(\pi) < 0$ everywhere:

- The log-likelihood is concave
- There is a unique maximum
- $\hat{\pi} = n_1/n$ is indeed the MLE

Intuition: The second derivative measures how "peaked" the log-likelihood is. Negative everywhere means we have a unique, stable maximum.

Computing the Hessian: Analytical Solution (1)

Goal: Verify that $H(\pi) < 0$ by computing the second derivative from scratch.

Step-by-Step Solution:

0. Starting with the Score (first derivative):

$$s(\pi) = \frac{\partial \ell(\pi; y)}{\partial \pi} = \frac{n_1}{\pi} - \frac{n_0}{1 - \pi}$$

where $n_1 = \sum y_i$ and $n_0 = n - n_1$.

1. Step 1: Take the derivative of each term

$$H(\pi) = \frac{\partial s(\pi)}{\partial \pi} = \frac{\partial}{\partial \pi} \left(\frac{n_1}{\pi} \right) + \frac{\partial}{\partial \pi} \left(-\frac{n_0}{1 - \pi} \right)$$
$$= -\frac{n_1}{\pi^2} + \frac{\partial}{\partial \pi} \left(\frac{n_0}{1 - \pi} \right)$$

Computing the Hessian: Analytical Solution (2)

2. Step 2: Apply the quotient rule to the second term

For $\frac{n_0}{1-\pi}$: the numerator is constant, so

$$\frac{\partial}{\partial \pi} \left(\frac{n_0}{1-\pi} \right) = n_0 \cdot \frac{\partial}{\partial \pi} (1-\pi)^{-1} = n_0 \cdot (-1)(1-\pi)^{-2} \cdot (-1) = \frac{n_0}{(1-\pi)^2}$$

3. Step 3: Combine Step 1 and Step 2

$$H(\pi) = -\frac{n_1}{\pi^2} - \frac{n_0}{(1-\pi)^2}$$

✓ Result: Since $n_1 > 0$, $n_0 > 0$, $\pi \in (0, 1)$:

$$H(\pi) = -rac{n_1}{\pi^2} - rac{n_0}{(1-\pi)^2} < 0$$
 always

Conclusion: The log-likelihood is strictly concave \Rightarrow unique maximum at $\hat{\pi}$.

Example Calculation

June exam: n = 95 students, $n_1 = 71$ passed

$$\hat{\pi}_{\mathsf{June}} = rac{71}{95} pprox 0.747$$

September exam: n = 27 students, $n_1 = 10$ passed

$$\hat{\pi}_{\mathsf{Sept}} = rac{10}{27} pprox 0.370$$

Interpretation:

- \bullet June exam: students pass with probability $\approx 75\%$ (easier exam)
- ullet September exam: students pass with probability pprox 37% (harder exam)
- Difference is substantial: might indicate different student ability or exam difficulty

Confidence Intervals from ML

Standard error of $\hat{\pi}$:

$$\mathsf{SE}(\hat{\pi}) = \sqrt{rac{\hat{\pi}(1-\hat{\pi})}{n}}$$

95% Confidence Interval:

$$\hat{\pi} \pm 1.96 \cdot \mathsf{SE}(\hat{\pi})$$

Example (June exam):

$$\mathsf{SE} = \sqrt{\frac{0.747 \times 0.253}{95}} \approx 0.044$$
 95% $\mathsf{CI} = [0.747 - 1.96(0.044), 0.747 + 1.96(0.044)] = [0.661, 0.833]$

Example (September exam, smaller n):

$$\mathsf{SE} = \sqrt{\frac{0.370 \times 0.630}{27}} \approx 0.093$$
 95% $\mathsf{CI} = [0.370 - 1.96(0.093), 0.370 + 1.96(0.093)] = [0.188, 0.552]$

Notice: **Wider CI with smaller** *n* (more uncertainty).

Connection to Logit/Probit

In the binomial model we just studied:

$$P(Y_i = 1) = \pi$$
 (constant for all students)

In logit/probit models:

$$P(Y_i = 1 \mid X_i) = F(X_i\beta)$$

where:

- $F(\cdot)$ is a CDF (logistic or normal)
- The probability varies with observable characteristics X_i
- $oldsymbol{\circ}$ is the parameter vector (like π before, but multidimensional)

Key similarities:

- Log-likelihood: $\ell(\beta) = \sum_{i=1}^{n} [y_i \log F(X_i \beta) + (1 y_i) \log (1 F(X_i \beta))]$
- MLE: maximizes $\ell(\beta)$
- Inference: uses scores, Hessian, LR/Wald/LM tests

From Binomial Model to Model Comparison (1)

What we learned so far:

- ullet We can estimate π (a single parameter) via maximum likelihood
- At the MLE: $\hat{\pi} = \bar{y}$ (sample mean)
- The log-likelihood tells us how good the fit is

Now in logit/probit:

- Instead of one π , we have many parameters $\boldsymbol{\beta}$
- The MLE $\hat{\boldsymbol{\beta}}$ maximizes $\ell(\boldsymbol{\beta})$
- Different models have different log-likelihoods

From Binomial Model to Model Comparison (2)

Key insight for model comparison:

- ullet Constant-only model: Only intercept (no regressors) $\Rightarrow \ell_{\mathsf{const}}$
- Full model: All regressors included $\Rightarrow \ell_{\text{full}}$
- Always: $\ell_{\text{full}} \ge \ell_{\text{const}}$ (adding variables can't make fit worse)
- The difference in log-likelihoods measures improvement

The Problem: R^2 in Nonlinear Models

OLS:
$$R^2 = 1 - \frac{\sum \hat{u}_i^2}{\sum (y_i - \bar{y})^2}$$
 works great

Logit/Probit: R^2 is **inappropriate** because:

- **1** Dependent variable is binary \Rightarrow fixed variation
- 2 Predictions $\hat{P}_i \in (0,1)$ are probabilities, not 0 or 1
- **3** Residuals $\hat{u}_i = y_i \hat{P}_i$ are not identically distributed

Solution: Use alternatives:

- Pseudo-R² (based on likelihoods)
- Classification accuracy (based on predictions)
- ML hypothesis tests (LR, Wald, LM)

Log-Likelihood for Binary Models

For observation *i*:

$$P(Y_i = y_i | \mathbf{X}_i) = F(\mathbf{X}_i \boldsymbol{\beta})^{y_i} \cdot [1 - F(\mathbf{X}_i \boldsymbol{\beta})]^{1 - y_i}$$

Sum over all *n* observations:

$$\ell(\beta; \mathbf{y}) = \sum_{i=1}^{n} \left[y_i \ln F(\mathbf{X}_i \beta) + (1 - y_i) \ln(1 - F(\mathbf{X}_i \beta)) \right] \tag{1}$$

Key facts:

- $\ell(\beta; \mathbf{y}) < 0$ always (log of probabilities)
- Larger (less negative) = better fit
- Logit: $F(z) = \frac{e^z}{1+e^z} = \frac{1}{1+e^{-z}}$
- **Probit:** $F(z) = \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$ (std normal)

McFadden's Pseudo-R²

The most common measure:

$$R_{\mathsf{McF}}^2 = 1 - \frac{\ell_{\mathsf{full}}}{\ell_{\mathsf{const}}} \tag{2}$$

where:

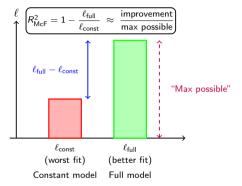
- \bullet $\ell_{\text{full}} = \text{log-likelihood with all regressors}$
- ullet $\ell_{\mathsf{const}} = \mathsf{log}\text{-likelihood}$ with only constant

Interpretation:

- Ranges from 0 to 1 (approximately)
- $R_{\text{McF}}^2 = 0.15$: 15% improvement over constant-only model
- Benchmark: 0.2-0.4 is "good" for discrete choice
- NOT comparable to OLS R^2 (tends to be much lower)

From Log-Likelihood Difference to McFadden's R^2

Core idea: Compare how much the log-likelihood improves when we move from the constant-only model to the full model.



Interpretation:

- If the full model does not improve the log-likelihood $\Rightarrow R_{\text{McF}}^2 \approx 0$.
- Larger improvements in log-likelihood \Rightarrow higher R^2_{McF} .

Why McFadden's R^2 Makes Sense

Comparison with OLS R^2 :

Metric	OLS	Logit/Probit
Numerator	$\sum \hat{u}_i^2$	ℓ_{full}
Denominator	$\sum (y_i - \bar{y})^2$	ℓ_{const}
Intuition	% of variance explained	% of likelihood improved
Formula	$R^2 = 1 - rac{ extsf{SSR}}{ extsf{SST}}$	$R_{McF}^2 = 1 - rac{\ell_{full}}{\ell_{const}}$

Why not use OLS R^2 for logit/probit?

- 1. Binary $y \in \{0,1\}$ has **fixed variation** (no natural "total")
- 2. Predictions $\hat{P}_i \in (0,1)$ are probabilities (not errors)
- 3. Residuals $\hat{u}_i = y_i \hat{P}_i$ are heteroskedastic by design
- 4. Log-likelihood is the natural scale for likelihood-based models

McFadden's R^2 : Practical Guidelines

Benchmark interpretation (from literature):

Range	Interpretation
0.0 - 0.1	Weak fit (consider different model)
0.1 - 0.2	Fair fit (acceptable for exploratory work)
0.2 - 0.4	Good fit (typical for discrete choice)
0.4 - 0.6	Very good fit (model does well)
> 0.6	Excellent fit (rare in practice)

Important note:

- McFadden R^2 is **NOT comparable to OLS** R^2
- OLS R^2 tends to be much *higher* than McFadden
- Example: OLS $R^2 = 0.7 \approx \text{McFadden } R^2 = 0.15 \text{ (same model!)}$
- Always report McFadden + classification accuracy together

Alternative Pseudo- R^2 Measures

- ullet Cox-Snell: $R_{ ext{CS}}^2=1-\left(rac{L_{ ext{const}}}{L_{ ext{full}}}
 ight)^{2/n}$ (uses likelihood, not log-likelihood)
- Nagelkerke: $R_{\text{Nag}}^2 = \frac{R_{\text{CS}}^2}{R_{\text{CS},\text{max}}^2}$ (scales to [0,1])
- Information Criteria:
 - AIC = $2k 2\ell(\hat{\beta})$ (Smaller is better)
 - ▶ BIC = $k \ln(n) 2\ell(\hat{\beta})$ (More penalty on k)

In practice: Report McFadden's R^2 + classification accuracy

Classification Table (Confusion Matrix)

Process:

- 1. Compute predicted probability: $\hat{P}_i = F(\mathbf{X}_i \hat{\boldsymbol{\beta}})$
- 2. Apply threshold (typically 0.5):

$$\hat{y}_i = \begin{cases} 1 & \text{if } \hat{P}_i > 0.5\\ 0 & \text{otherwise} \end{cases} \tag{3}$$

3. Tabulate against actual outcomes

		Predicted	
		$\hat{y}=0$	$\hat{y}=1$
Actual	y = 0	TN	FP
	y = 1	FN	TP

Accuracy Metrics

Accuracy (Overall):

$$Accuracy = \frac{TP + TN}{n}$$

→ Proportion of correct predictions

Sensitivity (True Positive Rate):

Sensitivity =
$$\frac{TP}{TP + FN}$$

→ Proportion of actual 1's correctly predicted

Specificity (True Negative Rate):

Specificity =
$$\frac{TN}{TN + FP}$$

→ Proportion of actual 0's correctly predicted

Trade-off: Lower threshold ⇒ higher sensitivity, lower specificity

Example: Ketchup Brand Choice (Model A)

Logit with pricebrand1 only

	Predicted		
brand1	0	1	Total
0	2488	0	2488
1	310	0	310
Total	2798	0	2798

Analysis:

• Accuracy: 2488/2798 = 88.9%

• Sensitivity: 0/310 = 0% (predicts everyone as 0!)

• Specificity: 2488/2488 = 100%

Problem: Model predicts everyone chooses y = 0. Weak predictive power.

Example: Ketchup Brand Choice (Model B)

Logit with pricebrand1 AND pricebrand2

	Predicted		
brand1	0	1	Total
0	2465	23	2488
1	309	1	310
Total	2774	24	2798

Improved metrics:

• Accuracy: (2465 + 1)/2798 = 88.1% (worse overall)

• Sensitivity: 1/310 = 0.32% (still very low)

• Specificity: 2465/(2465 + 23) = 99.1% (better)

Insight: Imbalanced data (mostly y = 0) limits predictive ability

The "Trinity" of ML Tests

Testing $H_0: \mathbf{R}\boldsymbol{\beta} = \mathbf{q}$ vs $H_1: \mathbf{R}\boldsymbol{\beta} \neq \mathbf{q}$

Test	Formula	Needs	When
LR	$-2(\ell_R-\ell_U)$	Both	Comparing models
Wald	(see next)	Unrestr. only	Easy to estimate
LM	(see next)	Restr. only	Rare in practice

Distribution: All $\sim \chi_q^2$ under H_0 , where q=# restrictions

Decision: If Test Stat $> \chi^2_{q,\alpha} \Rightarrow$ **Reject** H_0

Likelihood Ratio (LR) Test

Formula:

$$LR = -2(\ell_R - \ell_U) \tag{4}$$

where ℓ_R = restricted model, ℓ_U = unrestricted model

Intuition:

- If H_0 true: $\ell_R \approx \ell_U \Rightarrow \mathsf{LR} \approx 0 \Rightarrow \mathsf{don't}$ reject
- If H_0 false: $\ell_U \gg \ell_R \Rightarrow LR$ large \Rightarrow reject

Advantages:

- Simple to compute (just log-likelihoods)
- Easy to interpret
- Standard for comparing nested models

LR Test Example

Setup: Test H_0 : $\beta_{pricebrand2} = 0$

- Restricted: logit with pricebrand1 only $\Rightarrow \ell_R = -836.30363$
- ullet Unrestricted: logit with pricebrand1 + pricebrand2 $\Rightarrow \ell_U = -715.62915$

Calculation:

$$LR = -2(-836.30363 - (-715.62915)) = -2 \times (-120.67448) = 241.35$$
 (5)

Critical value (q = 1, $\alpha = 0.05$): $\chi^2_{1,0.05} = 3.841$

Decision: $241.35 > 3.841 \Rightarrow$ **Reject** H_0

p-value: $Pr(\chi_1^2 > 241.35) \approx 0.000$

Wald Test

Formula:

$$Wald = (\mathbf{R}\hat{\boldsymbol{\beta}}_{U} - \mathbf{q})^{\top} [\mathbf{R}\widehat{\mathsf{Var}}(\hat{\boldsymbol{\beta}}_{U})\mathbf{R}^{\top}]^{-1} (\mathbf{R}\hat{\boldsymbol{\beta}}_{U} - \mathbf{q})$$
(6)

 \rightarrow Under H_0 : Wald $\sim \chi_q^2$

In Stata just use test command

Advantages:

- Only need unrestricted model
- Easiest to implement in practice
- Asymptotically equivalent to LR

Lagrange Multiplier (LM) Test

Formula:

$$LM = \mathbf{s}(\hat{\boldsymbol{\beta}}_R)^{\top} [\mathbf{H}(\hat{\boldsymbol{\beta}}_R)]^{-1} \mathbf{s}(\hat{\boldsymbol{\beta}}_R)$$
 (7)

where $\mathbf{s} = \text{score}$ (gradient), $\mathbf{H} = \text{Hessian}$

When to use:

- Restricted model is easy to estimate
- Unrestricted model is complex
- Rarely used in practice for binary choice

Asymptotic equivalence: LR, Wald, and LM all $\sim \chi_q^2$ as $n \to \infty$

Practical Workflow: Step 1 - Load Data & Estimate Model

```
clear all
use "ketchup_binary_clabe.dta"
```

* Baseline model logit brand1 pricebrand1 est store model_A scalar II_A = e(II)

Output: $\ell_A = -836.30363$

Practical Workflow: Step 2 - Compute McFadden's R^2

```
* Constant—only model
logit brand1
scalar II_const = e(II)

* McFadden's R—squared
scalar mcfadden = 1 - (II_A / II_const)
display "McFadden's R—sq = " mcfadden
```

Example:

- $\ell_{\text{const}} = -1086.1163$
- $\ell_A = -836.30363$
- $\qquad \qquad \qquad \qquad \qquad \qquad \qquad R_{\mathsf{McF}}^2 = 1 (-836.30363/ -1086.1163) = 0.230$

Practical Workflow: Step 3 - Compute Predicted Probabilities

```
* Re-estimate model A
logit brand1 pricebrand1
* Predicted probability (logit formula)
gen phat_A = \exp(-b[-cons] + -b[pricebrand1]*pricebrand1) / ///
              (1 + \exp(-b[-\cos] + -b[\operatorname{pricebrand1}] * \operatorname{pricebrand1}))
* Classification (0.5 threshold)
gen vhat_A = (phat_A > 0.5)
* Classification table
tab brand1 yhat_A
```

Practical Workflow: Step 4 - Extended Model & LR Test

```
* Unrestricted model
logit brand1 pricebrand1 pricebrand2
est store model B
scalar II_B = e(II)
* LR test (manual)
scalar LR = -2 * (II_A - II_B)
scalar df = 1
scalar crit = invchi2(df, 0.95)
scalar pval = chi2tail(df. LR)
display "LR = LR"
display "Critical value = " crit
display "P-value = " pval
```

Practical Workflow: Step 5 - Wald Test

- * Already estimated model B logit brand1 pricebrand2
- * Single restriction test pricebrand2 = 0
- * Joint restrictions test pricebrand1 pricebrand2
- * Built—in LR test Irtest model_A model_B

Key Takeaways

Goodness-of-Fit:

- \checkmark McFadden's $R^2=1-rac{\ell_{
 m full}}{\ell_{
 m const}}$ (benchmark: 0.2–0.4 is good)
- √ Classification accuracy (watch for imbalanced data)
- √ AIC/BIC for model comparison

Hypothesis Testing:

- ✓ LR, Wald, LM all asymptotically χ_q^2
- √ LR: simple (just log-likelihoods)
- √ Wald: easiest in practice (Stata test command)
- ✓ All three asymptotically equivalent

Practical Rule:

- ✓ Always report pseudo- R^2 + classification accuracy
- √ Manual computation = understanding
- √ Check imbalance in outcomes

Exam Checklist

- \square McFadden's R^2 formula
- ☐ Classification table (TN, TP, FN, FP)
- ☐ Accuracy, Sensitivity, Specificity
- □ LR test formula: $LR = -2(\ell_R \ell_U)$
- \square Distribution: χ_q^2
- ☐ Decision rule: compare to critical value
- □ Logit CDF: $F(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$
- \Box Probit CDF: $F(z) = \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$
- ☐ Manual computation in Stata using scalars
- ☐ Difference: LR vs Wald vs LM

Questions?

Let's apply this in Stata