How to Develop an Economics Research Paper Key Steps, Workflow, Data Sources, and Examples

CLABE 2025/2026

Marco Rosso

4 December 2025

Learning Goals

- Understand the research pipeline: from idea to publication
- Learn where to find and evaluate data
- Master empirical identification strategies
- Apply marginal effects concepts to real data (Mroz 1987)
- Develop skills for independent research

What Makes a Good Research Idea?

Three essential ingredients:

- Economically relevant: Addresses a real-world question that matters
- Novel contribution: Something new relative to existing literature
- Feasible: Data available and identification strategy credible

Red flags:

- Too broad ("How does education affect income?")
- No clear data source
- Same as 50 other papers (no new angle)

Sources of Inspiration

Where to look for ideas:

- Top journals: AER, QJE, JPE, ReStud, Econometrica
- Policy reports: OECD, World Bank, IMF
- Seminars and conferences: Discussions, feedback loops
- Replication with new data: Take a classic paper, apply to new context
- Advisor discussions: Brainstorming sessions

Pro tip: Read extensively in your field. Ideas often emerge from gaps between papers.

Formulating Research Questions

A good research question is:

- Answerable with data: Don't ask "Should government do X?" (normative)
- Narrow and focused: Can be addressed in one paper (or one chapter)
- Theoretically motivated: Grounded in economic mechanisms
- Empirically testable: Clear predictions from theory

Example (good): "How does access to childcare subsidies affect female labor force participation?"

Example (bad): "What policies improve the economy?" (too vague)

Building Your Theoretical Framework

Why theory matters?

- Guides empirical design
- Generates testable predictions
- Helps interpret results

Your checklist:

- 1. Outline the economic mechanisms (how does A lead to B?)
- 2. Decide: Do I need a formal model?
 - ▶ YES if predictions are non-obvious or competing theories exist
 - ▶ NO if mechanisms are straightforward
- 3. List potential confounders and channels
- 4. Identify testable hypotheses

Types of Data

- Micro data: Individuals, households, firms
- Administrative data: Tax records, education, health, voting
- Survey data: Cross-sectional, panel (repeated over time)
- Geospatial data: Maps, satellite imagery, GPS coordinates
- Historical archives: Old documents, newspapers
- Experimental data: RCTs, field experiments

 $\textbf{Key trade-off:} \ \ \text{Precision vs. coverage} \rightarrow \text{Administrative data is rich but restricted}.$

Public Data Sources

Where to find free, high-quality datasets

- World Bank Microdata https://microdata.worldbank.org/
- OECD Data https://data.oecd.org/
- Eurostat https://ec.europa.eu/eurostat/
- IPUMS (Census data) https://ipums.org/
- DHS (health, demographics) https://dhsprogram.com/
- Harvard Dataverse https://dataverse.harvard.edu/
- Gapminder https://www.gapminder.org/data/
- …and many others

Pro tip: Always check documentation, sample size, and coverage before committing.

Evaluating Datasets

Checklist before analysis:

- Sample size and representativeness
- Geographic and time coverage
- Variable definitions and coding
- Missing data patterns
- Potential measurement error
- Data quality reports

Red flag: If documentation is unclear or minimal, move on.

Core Identification Strategies

- 1. Randomized Controlled Trials (RCTs): Gold standard (exogenous treatment)
- 2. Difference-in-Differences (DiD): Exploit policy timing
- 3. Instrumental Variables (IV): Use exogenous variation in instrument
- 4. Regression Discontinuity (RD): Exploit cutoff rules
- 5. Panel Fixed Effects: Control for time-invariant confounders
- 6. Synthetic Control: Construct comparison group for policy evaluation

The choice depends on your research question and data available.

Requirements for Credible Identification

Your **empirical design** must satisfy:

- Exogeneity: Treatment is not correlated with unobservables
- Transparency: Clearly state assumptions (parallel trends, exclusion restriction, etc.)
- Balance: Treatment and control groups are similar pre-treatment
- Robustness: Results hold with alternative specs

Always include:

- Pre-treatment comparisons (balance tests, pre-trends)
- Falsification tests
- Robustness checks (alternative specs, placebo tests)

Paper Structure

Standard organization:

- **Introduction:** Hook + motivation + contribution
- 2 Literature Review: Position your paper
- Institutional Background: Context and institutions
- Data: Sources, definitions, summary statistics
- Empirical Strategy: Identification approach
- **ORESULTS:** Main findings + robustness
- Mechanisms: Heterogeneity and channels
- **© Conclusion:** Implications

Golden rule: Big-picture intuition BEFORE technical details.

Writing Tips

- Use simple, direct language (avoid jargon)
- Place results in tables and figures (easier to parse)
- Include graphical abstracts (event studies, maps, before-after plots)
- Replicate all results with do-files / scripts
- Get feedback from co-authors, advisors

Useful tools:

- LTEX: Professional typesetting (Overleaf for cloud editing)
- Git/GitHub: Version control
- Stata/R/Python: Statistical analysis

Getting Your Work Out

- Present: Seminars, brown-bags, conferences
- **Upload:** SSRN, NBER (working paper versions)
- Provide replication materials:
 - Data documentation
 - Code with comments (master do-file / main script)
 - README file explaining everything
- Submit: Target journals based on your topic and field

Pro tip: Early feedback on working papers saves time later.

From Template to Real Paper

So far:

- We built a general roadmap for an economics paper.
- We discussed where to find data and how to think about identification.

Next: See how a real paper (Mroz 1987) fits this template and use it as a lab for binary choice models and marginal effects.

 \longrightarrow Mroz, T. A. (1987). The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions. Econometrica, 55(4), 765–799.

Empirical Application: Mroz (1987)

Big picture:

- Topic: Female labor supply (married women in the U.S.).
- Data: PSID 1975 (interview year 1976), 753 married women.
- Outcome: Labor supply (hours / participation), wages, non-wife income, children.
- Goal: Show how different economic/statistical assumptions (Tobit, exogeneity, selection) change estimated wage and income effects.

Why we use it here: canonical dataset, clean example of our pipeline:

question \rightarrow data \rightarrow model \rightarrow robustness.

From Template to Real Paper: Mroz (1987) (1)

Our generic structure vs. Mroz's paper sections

Our template	Mroz (1987)
Introduction: motivation, contribution, literature	Intro pages: motivates wide range of labor- supply estimates, shows Table I with previous studies, states contribution as a systematic sen- sitivity analysis.
Institutional background / context	Short discussion of female labor supply literature and PSID data context (Panel Study of Income Dynamics, 1975 wave).
Data: sources, definitions, summary stats	PSID sample description, definition of hours, wages, nonwife income; Table III with means and standard deviations.

From Template to Real Paper: Mroz (1987) (2)

Our template	Mroz (1987)
Empirical strategy / model	Section "The Basic Labor Supply Model": linear labor supply equation, instruments, selection issues, assumptions (Tobit, exogeneity).
Results + robustness	Tables IV-VIII: alternative specifications, exogeneity tests, selection corrections, tax controls; discussion of sensitivity.
Conclusion	Final section: summarizes main conclusions about wage and income elasticities and implications for female labor supply.

Paper Structure in Practice: Mroz (1987)

When you read Mroz (1987), try to locate our checklist:

1. Research question & contribution

--- Opening paragraphs and discussion around Table I.

2. Data and variables

--- Description of PSID sample, construction of hours, wages, nonwife income, and Table III.

3. Model and identification

→ Section "The Basic Labor Supply Model": choice of functional form, instruments, assumptions (Tobit, exogeneity, selection).

4. Robustness / sensitivity

→ Comparisons across Tables IV–VIII: how wage and income effects change with different assumptions.

5. Conclusion

→ Final pages: main message that wage and income effects are smaller and more stable than many previous studies suggest.

Key Variables in the Mroz Dataset

Outcome variables:

- inlf: labor force participation (1 = worked, 0 = did not work).
- hours: annual hours of work.

Main regressors:

- educ: years of schooling.
- exper, expersq: labor market experience.
- nwifeinc: non-wife income (other household income).
- kidslt6, kidsge6: number of young and older children.

Link to our empirical exercise: same variables used in the logit/probit models and marginal effects do-file.

Economic Hypotheses

Predictions from theory:

- **Income effect:** Higher household income ⇒ less likely to work
 - ▶ Intuition: Can afford to substitute away from market work
- ② Education effect: More education ⇒ more likely to work
 - Intuition: Higher wage, stronger incentive
- **③ Childcare constraint:** Young children ⇒ less likely to work
 - Intuition: Childcare is costly; must work elsewhere

→ Model: Binary choice (Logit or Probit)

Binary Choice Model

Latent variable framework:

$$\begin{split} & \mathsf{inlf}_i^* = \beta_0 + \beta_1 \mathsf{nwifeinc}_i + \beta_2 \mathsf{educ}_i + \dots + \varepsilon_i \\ & \mathsf{inlf}_i = \begin{cases} 1 & \mathsf{if} \; \mathsf{inlf}_i^* > 0 \\ 0 & \mathsf{otherwise} \end{cases} \end{split}$$

Key challenge: β_k is NOT the marginal effect!

- In linear models: $\beta_k = \frac{\partial y}{\partial x_k}$
- In logit/probit: $\beta_k \neq \frac{\partial P(y=1)}{\partial x_k}$
- Must compute marginal effects explicitly

Mroz Results: Illustration of Logit Output

Marginal effects (Logit, AME):

Variable	Coefficient	AME	Std. Error
nwifeinc	-0.021**	-0.0038**	0.0016
educ	+0.221***	$+0.0395^{***}$	0.0075
exper	+0.206***	+0.0368***	0.0052
expersq	-0.003***	-0.0006***	0.0002
age	-0.088***	-0.0157^{***}	0.0024
kidslt6	-1.443***	-0.2578***	0.0324
kidsge6	+0.060	+0.0107	0.0142
***- < 0.05	1 ** < 0.0F	* - < 0.10	

^{***}p < 0.01, **p < 0.05, *p < 0.10

Interpretation (AME, in percentage points):

- ullet Each additional \$1,000 of non-wife income \Rightarrow about 0.4 pp \downarrow in participation
- One more year of education \Rightarrow about 4.0 pp \uparrow in participation
- ullet One more child < 6 years \Rightarrow about 25.8 pp \downarrow in participation

Why Marginal Effects Matter

Example: Suppose $\beta_{\text{nwifeinc}} = -0.10$ in logit

Wrong interpretation: "A \$1,000 increase in non-wife income decreases participation by 10 percentage points."

Why wrong? The effect size depends on baseline probability:

- Near P = 0.5: effect is LARGE
- Near P = 0 or P = 1: effect is SMALL (flat CDF region)

Solution: Compute marginal effects at meaningful points

Average Marginal Effects (AME)

Definition:

$$AME_k = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial P_i}{\partial x_{ik}}$$

Interpretation: On average across the sample, a one-unit increase in x_k changes predicted participation by AME_k percentage points.

Advantage: Representative of typical effect

Disadvantage: Doesn't correspond to any single individual

Marginal Effects at the Means (MEM)

Definition:

$$\mathsf{MEM}_k = \frac{\partial P}{\partial x_k} \Big|_{x = \bar{\mathbf{x}}}$$

Interpretation: For an "average" woman (at sample means), a one-unit increase in x_k changes predicted participation by MEM_k percentage points.

Advantage: Interpretable as effect for typical person

Disadvantage: Mean individual may not exist

Logit Marginal Effects: Formulas

Logit CDF:
$$P_i = \frac{e^{x_i\beta}}{1+e^{x_i\beta}} = \frac{1}{1+e^{-x_i\beta}}$$

Marginal effect on x_{ik} :

$$\frac{\partial P_i}{\partial x_{ik}} = P_i (1 - P_i) \beta_k$$

AME:

$$\mathsf{AME}_k = \frac{1}{N} \sum_{i=1}^N P_i (1 - P_i) \hat{\beta}_k$$

MEM:

$$\mathsf{MEM}_k = P_{\bar{x}}(1 - P_{\bar{x}})\hat{\beta}_k$$

where $P_{\bar{x}}$ is predicted probability at sample means

Probit Marginal Effects: Formulas

Probit CDF:
$$P_i = \Phi(x_i\beta) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x_i\beta} \exp\left(-\frac{t^2}{2}\right) dt \longrightarrow \text{standard normal CDF}$$

Marginal effect on x_{ik} :

$$\frac{\partial P_i}{\partial x_{ik}} = \phi(x_i \beta) \beta_k$$

where ϕ is the standard normal PDF.

AME:

$$\mathsf{AME}_k = \frac{1}{N} \sum_{i=1}^N \phi(x_i \hat{\beta}) \hat{\beta}_k$$

MEM:

$$\mathsf{MEM}_k = \phi(\bar{x}\hat{\beta})\hat{\beta}_k$$

Logit vs. Probit

Feature	Logit	Probit
Distribution	Logistic	Normal
CDF	$\frac{1}{1+e^{-z}}$	$\Phi(z)$
ME Formula	$P(1-P)\beta_k$	$\phi(z)\beta_k$
Tail Behavior	Heavier	Thinner

In practice: Results are usually very similar. Choice is often conventional.

Key Takeaways

- \checkmark Research process is iterative: From idea \rightarrow data \rightarrow analysis \rightarrow writing
- ✓ Data quality matters: Invest time in understanding your data
- ✓ **Identification is crucial:** Credible causal claims require careful design
- ✓ Interpretation requires care: In non-linear models, look at marginal effects, not coefficients
- √ Transparency builds trust: Share code, data, assumptions

→ **Next steps:** Start with a question that excites you. The rest follows.

Questions?

Let's see Mroz (1987) in Stata