Interpreting OLS Coefficients

Different functional forms imply different interpretations of coefficients. Understanding these distinctions is fundamental for empirical analysis.

Marco Rosso

1. Linear-Linear Model

$$y = \beta_0 + \beta_1 x + u$$

Interpretation:

• A one-unit increase in x changes y by β_1 units.

Example: If $\beta_1 = 2.5$, then increasing x by 1 increases y by 2.5 units.

2. Log-Linear Model (Semi-elasticity)

$$\ln(y) = \beta_0 + \beta_1 x + u$$

Interpretation:

• A one-unit increase in x changes y by approximately

$$100 \times \beta_1\%$$
.

- This approximation is valid for $|\beta_1| < 0.1$ (roughly).
- For large β_1 , use the exact change:

$$100(e^{eta_1}-1)\%.$$

Example: If $\beta_1 = 0.04$, then a 1-unit increase in x increases y by about 4%.

3. Linear-Log Model (Semi-elasticity)

$$y = \beta_0 + \beta_1 \ln(x) + u$$

Interpretation:

• A 1% increase in x changes y by:

$$0.01 \times \beta_1$$
 units (i.e., $\frac{\beta_1}{100}$ units).

Example: If $\beta_1 = 8$, then a 1% increase in x increases y by $0.01 \times 8 = 0.08$ units.

4. Log-Log Model (Elasticity)

$$\ln(y) = \beta_0 + \beta_1 \ln(x) + u$$

Interpretation:

- β_1 is an **elasticity**.
- A 1% increase in x changes y by β_1 %.

Example: If $\beta_1 = 0.7$, then increasing x by 1% increases y by 0.7%.

5. Dummy Variable in Linear Model

$$y = \beta_0 + \beta_1 D + u$$

where $D \in \{0,1\}$.

Interpretation:

• β_1 is the difference in the mean of y between the two groups:

$$\beta_1 = E[y|D=1] - E[y|D=0].$$

Example: If $\beta_1 = 5$: when D = 1 (vs. D = 0), y is approximately 5 units higher on average.

6. Dummy Variable in Log-Linear Model

$$\ln(y) = \beta_0 + \beta_1 D + u$$

Interpretation:

• The percentage difference between D=1 and D=0 is:

$$100(e^{eta_1}-1)\%.$$

• For small β_1 : approximately $100\beta_1\%$.

Example: If $\beta_1 = 0.2$: $100(e^{0.2} - 1) \approx 22.14\% \Rightarrow$

That is, when D=1 (vs D=0), y is approximately 22% higher.

7. Interaction of Continuous Variable and Dummy

$$y = \beta_0 + \beta_1 x + \beta_2 D + \beta_3 (x \cdot D) + u$$

Interpretation:

- Slope for group D=0: β_1
- Slope for group D=1: $\beta_1+\beta_3$
- Difference in slopes: β_3

Used for: heterogeneous effects, gender differences, treatment interactions.

Summary Table: Interpretation of β

Model	Interpretation of eta_1
y vs. x	$\Delta y = \beta_1 \Delta x$
ln y vs. x	1 unit \uparrow in $x ightarrow pprox 100 eta_1\%$ change in y
y vs. ln x	$1\%\uparrow$ in $x o 0.01eta_1$ units change in y
$\ln y$ vs. $\ln x$	elasticity (1% in $x o eta_1\%$ in y)
y vs. dummy D	difference in means
In y vs. dummy D	$100(e^{eta_1}-1)\%$ difference

Common Mistakes to Avoid

- ▶ Using $100\beta_1\%$ when β_1 is large (use exact formula).
- ▶ Treating dummy coefficients in log models as additive (they are multiplicative).
- ▶ Misinterpreting elasticities when logs are missing.
- ▶ Forgetting that log-linear models require y > 0.
- ▶ Forgetting heterogeneity when interactions are present.

Final Takeaways

- ✓ Always check the functional form before interpreting coefficients.
- √ Logs turn units into percentages or elasticities.
- ✓ Dummy variables shift levels or percentages depending on log/not-log.
- ✓ Interaction terms change slopes.
- √ When in doubt: compute marginal effects explicitly.