Marginal Effects in Logit & Probit Models and Maximum Likelihood Tests

CLABE 2025/2026

Marco Rosso

27 November 2025

Learning Goals

- Understand why coefficients \neq marginal effects in non-linear models
- Compute marginal effects for continuous variables:

$$\frac{\partial P}{\partial x_k} = f(X\beta) \cdot \beta_k$$

- ► This formula holds only when the index is linear in parameters and covariates, and only for continuous regressors.
- Compute marginal effects for discrete variables:

$$ME = P(Y = 1|D = 1) - P(Y = 1|D = 0)$$

- ▶ For discrete (dummy) variables, marginal effects must be computed as finite differences.
- Distinguish between AME (Average Marginal Effect) and MEM (at Mean)
- Understand the three ML tests: LR, Wald, and Lagrange Multiplier
- Compute the Wald test and LR statistic, its p-value, and the critical value manually from Stata's log-likelihood output

The Core Problem: Non-Linearity

In OLS:

$$y = \beta_0 + \beta_1 x + u$$

The marginal effect is **constant**: $\frac{dy}{dx} = \beta_1$ for all x

In Logit/Probit:

$$P(Y = 1|X) = F(X\beta)$$

where $F(\cdot)$ is CDF (logistic or normal) The marginal effect **varies**:

$$\frac{\partial P}{\partial x_k} = f(X\beta) \cdot \beta_k$$

 $f(X\beta)$ depends on X for each observation!

Marginal Effects Formula

$$\frac{\partial P}{\partial x_k} = f(X\beta) \times \beta_k \tag{1}$$

Note: This formula applies only to models with a linear index and only when x_k is a continuous regressor. For dummy variables, marginal effects must be computed using differences in predicted probabilities.

Two components:

 β_k : Coefficient

Can be estimated from data

Constant for all observations

 $f(X\beta)$: Density

Derivative of CDF

Varies across individuals

 $\textbf{Key insight:} \ \, \mathsf{Same} \ \, \mathsf{regressor} \Rightarrow \textbf{different effects} \ \, \mathsf{for \ different \ people}$

Continuous Variables: Worked Example

Setup: Logit model of low birth weight $\rightarrow \beta_{age} = 0.05$, $\beta_0 = -2.0$

Person A: age=25

$$X_A \beta = -2.0 + 0.05(25) = -0.75$$
 $f(-0.75) \approx 0.218$
 $\frac{\partial P}{\partial \text{age}} = 0.218 \times 0.05 = \boxed{0.0109 \text{ pp}}$

Person B: age=35

$$egin{aligned} X_Beta &= -2.0 + 0.05(35) = -0.25 \ f(-0.25) &pprox 0.375 \quad ext{(steeper part of curve!)} \ &rac{\partial P}{\partial ext{age}} &= 0.375 imes 0.05 = \boxed{0.0188 ext{ pp}} \end{aligned}$$

Result: Same regressor, different effects! Age 25: 1.09 pp vs Age 35: 1.88 pp

Discrete Variables: Finite Differences

For dummy variable *D*, use finite difference:

$$\mathsf{ME}_D = P(Y = 1 | D = 1, X_-) - P(Y = 1 | D = 0, X_-)$$
 (2)

where X_{-} are all the regressors expect D

Example: Smoking (age=35)

$$P(Y=1|{\sf smoke}=0) = rac{e^{-0.25}}{1+e^{-0.25}} pprox 0.406$$
 $P(Y=1|{\sf smoke}=1) = rac{e^{0.95}}{1+e^{0.95}} pprox 0.721$
 ${\sf ME_{smoke}} = 0.721 - 0.406 = \boxed{0.315 \ {\sf pp}}$

Interpretation: Being a smoker increases probability of low birth weight by 31.5 percentage points.

AME vs MEM: Computing Average Effects

Problem: Marginal effects are heterogeneous. How to summarize?

MEM (at Mean):

- Set all $X = \bar{X}$
- Compute $f(\bar{X}\beta)$
- One effect per variable
- Problem: "mean person" may not exist

AME (Average):

- For each i: compute $f(X_i\beta)$
- Average across all n
- Realistic interpretation
- PREFERRED √

$$AME = \frac{1}{n} \sum_{i=1}^{n} f(X_i \beta) \cdot \beta_k$$
 (3)

Stata default: margins, dydx(*) gives AME

The "Trinity" of ML Tests

Testing
$$H_0: R\beta = q$$
 vs $H_1: R\beta \neq q$

• Example 1 (joint test):

$$H_0: \beta_1 = 0$$
 and $\beta_2 = 0$ $H_1:$ at least one is non-zero

• Example 2 (linear relation):

$$H_0: \beta_1 = 2\beta_2$$
 $H_1: \beta_1 \neq 2\beta_2$

Three asymptotically equivalent approaches:

Test	ldea	Requires	Best when
LR	Fit difference Distance from H_0 Slope at H_0	Both models	When comparing models or coefficients
Wald		Unrestricted only	When unrestricted model is easiest to estimate
LM		Restricted only	When restricted model is much simpler (rare)

All three test statistics follow

$$\chi_q^2$$
 under H_0 ,

where q is the number of restrictions in H_0 .

Likelihood Ratio (LR) Test (1)

Formula:

$$LR = -2(\ell_R - \ell_U) = -2\log\left(\frac{L_R}{L_U}\right)$$
(4)

where ℓ_R , $\ell_U = \text{log-likelihood}$ of restricted and unrestricted models

Logic:

- If H_0 true: $\ell_R \approx \ell_U \Rightarrow LR \approx 0 \Rightarrow$ don't reject
- If H_0 false: $\ell_U \gg \ell_R \Rightarrow \mathsf{LR} \ \mathsf{large} \Rightarrow \mathsf{reject}$

Likelihood Ratio (LR) Test (2)

Example:

- $\ell_{\text{unrestricted}} = -65.4$
- $\ell_{\text{restricted}} = -68.2$
- LR = -2(-68.2 + 65.4) = 5.6
- At $\alpha = 0.05$: $\chi^2_{2,0.05} = 5.99 \Rightarrow$ Do not reject (but borderline)

What "borderline" means:

- LR = 5.6 is very close to the 5% critical value (5.99)
- At $\alpha = 0.05 \rightarrow$ do not reject H_0
- At $\alpha = 0.10 \rightarrow$ critical value $\chi^2_{2,0.10} = 4.61 \rightarrow$ would reject H_0

Where is the Log-Likelihood in Stata?

After estimating, for example:

probit low age lwt i.smoke

Stata prints at the top:

Iteration 0: log likelihood = -120.345

Iteration 1: log likelihood = -110.234

...

Iteration 4: log likelihood = -65.432

- The **last** line $\log likelihood = -65.432$ is the value at convergence.
- In the full (unrestricted) model this is ℓ_U .
- In the restricted model (with some coefficients set to zero) this is ℓ_R .
- These two numbers are all we need to compute:

$$LR = -2(\ell_R - \ell_U)$$

LR Test in Stata: Manual Computation (1)

Step 1: estimate unrestricted and restricted models

```
probit low age lwt i.smoke
scalar II_full = e(II)

probit low i.smoke
scalar II_rest = e(II)
```

Step 2: compute LR statistic

```
scalar LR = -2*(II\_rest - II\_full)
display "LR statistic = " LR
```

LR Test in Stata: Manual Computation (2)

Step 3: compute critical value and p-value

```
scalar df = 2 // 2 restrictions: age and lwt scalar crit = invchi2(df, 0.95) scalar pval = chi2tail(df, LR) display "Critical value (5%): " crit display "p-value: " pval
```

Step 4: compare with built-in command

lrtest full_model restricted_model

Wald Test

Formula (single coefficient):

$$W = \left(\frac{\hat{\beta} - \beta_0}{\mathsf{SE}(\hat{\beta})}\right)^2 = t^2$$
 (5)

Logic:

- How many standard errors is $\hat{\beta}$ away from the value imposed by H_0 ?
- If far: reject H_0 . If close: do not reject.
- Only requires the unrestricted model (easy!).

Note: After logit or probit, Stata reports **Wald tests** (based on the asymptotic normal distribution of the estimator). After regress, Stata instead reports **t-tests and F-tests** with their *exact finite-sample distributions* (not Wald tests).

Wald Test in Stata: Manual Computation (1)

Example: test H_0 : $\beta_{age} = 0$ in a probit model

$$\mathsf{low} = \beta_0 + \beta_{\mathsf{age}} \mathsf{age} + \beta_{\mathsf{lwt}} \mathsf{lwt} + \beta_{\mathsf{smoke}} \mathsf{smoke} + u$$

Step 1: estimate the unrestricted model

probit low age lwt i.smoke

From the output, note:

- $\hat{\beta}_{age}$ (coefficient of age)
- $SE(\hat{\beta}_{age})$ (standard error)

Wald Test in Stata: Manual Computation (2)

Step 2: compute the t and Wald statistic by hand

$$t = \frac{\beta_{\rm age} - 0}{{\sf SE}(\hat{\beta}_{\rm age})}, \qquad W = t^2$$
 scalar b_age = _b[age] scalar se_age = _se[age] scalar t_age = b_age / se_age scalar W_age = t_age^2

Numerical example:

- $\hat{\beta}_{age} = 0.0487$, SE = 0.0156
- t = 0.0487/0.0156 = 3.12
- $W = (3.12)^2 = 9.75$

Wald Test in Stata: Manual Computation (3)

Step 3: critical value and p-value

$$W \sim \chi_1^2$$
 under H_0

```
scalar crit_5 = invchi2(1, 0.95)
scalar p_wald = chi2tail(1, W_{age})
```

Numerical example:

- Critical value at $\alpha = 0.05$: $\chi^2_{1.0.95} = 3.84$
- Since W = 9.75 > 3.84, we **reject** H_0

Interpretation:

- If $W>\chi^2_{1,0.95}$ or $p_wald<0.05\Rightarrow \text{reject }H_0$
- This matches the z-test and p-value shown by probit.

Wald Test: Additional Notes

Example recap:

- $\hat{\beta}_{age} = 0.0487$, SE = 0.0156
- t = 3.12, W = 9.75
- $\chi^2_{1,0.05} = 3.84 \Rightarrow$ **Reject**

Important:

- After logit or probit, Stata reports **Wald tests** (asymptotic normal approximation).
- After regress, Stata reports **t-tests and F-tests** with their *exact finite-sample distributions*, not Wald tests.

LR and Wald Tests: p-value vs. critical value (1)

Setup: Both LR and Wald tests rely on a test statistic

$$T_{
m obs} \sim \chi_q^2 \quad {
m under} \ H_0,$$

where q is the number of restrictions (degrees of freedom) and T_{obs} is the observed value of the test statistic.

Two equivalent approaches to conduct the test:

1. Critical-value approach

- ▶ Fix a significance level α (e.g. 5%).
- ▶ Obtain the critical value from the χ_q^2 distribution:

$$c_{\alpha}=\chi_{q,\,1-\alpha}^2.$$

- Decision rule:
 - ★ If $T_{\text{obs}} > c_{\alpha} \Rightarrow \text{Reject } H_0$.
 - ★ If $T_{\text{obs}} \leq c_{\alpha} \Rightarrow$ **Do not reject** H_0 .

LR and Wald Tests: p-value vs. critical value (2)

2. p-value approach

Compute the p-value as the upper-tail probability:

p-value =
$$P(\chi_q^2 \ge T_{\text{obs}})$$
.

- Decision rule:
 - ★ If p-value $< \alpha \Rightarrow$ **Reject** H_0 .
 - ★ If p-value $\geq \alpha \Rightarrow$ **Do not reject** H_0 .

Key point: For both LR and Wald tests, the **critical value** and **p-value** approaches are equivalent ways to reach the same decision about H_0 .

In other words, the **critical-value** rule and the **p-value** rule always give the **same decision**: they are two equivalent ways of comparing T_{obs} with the same χ_a^2 reference distribution.

Summary: Three Tests Compared

Test	Formula	Requires
LR	$-2(\ell_R-\ell_U)$	Both models
Wald	$(t)^{2}$	Unrestricted only
LM	$s_0^ op \mathit{I}_0^{-1} s_0$	Restricted only

Practical guide:

- Not interested in estimates under H_0 : use the Wald test (requires only the unrestricted model)
- Model comparison: use the LR test (requires both models; useful for discussing sensitivity)
- Restricted model much simpler: use the LM test (rare for logit/probit; not covered in practice)

Notes:

- If the exam asks you to *choose* a test, any is fine as long as justified.
- If the exam requires a *specific* test, using a different one is an error.

Stata: Key Commands

Estimate model:

probit low age lwt i.smoke

Marginal effects:

```
margins, dydx(*) // AME margins, dydx(*) atmeans // MEM margins, at(age=(20(5)40)) // Predicted P at different ages marginsplot // Plot results
```

Tests:

```
test age lwt // Wald test probit low age lwt i.smoke estimates store full probit low i.smoke estimates store restricted lrtest full restricted // LR test
```

Key Takeaways

- √ Logit/Probit coefficients are NOT marginal effects
- ✓ Marginal effects vary across individuals (heterogeneity)
- ✓ For interpretation, prefer **AME** over MEM
- ✓ Three asymptotically equivalent tests:

LR (benchmark), Wald (easy to compute), LM (rare in practice)

- ✓ Stata's margins command computes everything for you...
 - ...BUT in the exam you must know the math behind marginal effects formulas for both continuous and discrete regressors in logit and probit models.
- ✓ You must be able to read ℓ_R and ℓ_U from Stata output and compute the LR statistic, critical value, and p-value using the χ^2 distribution.
- √ You must also know how to compute LR and Wald tests by hand.

Questions?

Let's apply this in Stata